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Experimental  Determination of Extinction in Crystals 
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X-ray measurements of the integrated intensities of Fc single crystals and Fe powders support the 
idealized mosaic block mo(iel for calculating extinction. Secondary extinction was shown to be 
predominant in these specimens. Expressions are given which can serve as a guide for estimating 
extinction and for selecting those parameters which minimize extinction. 

I n t r o d u c t i o n  

In this paper we report the results of measurements 
on single crystals and powders undertaken to compare 
the observed diffracted intensities with those cal- 
culated for the traditional mosaic block model of a 
crystal. The mosaic block model was introduced by 
1)arwin (1914) solely for mathematical  convenience. 
Today we have an approximate idea of the structure 
of an imperfect crystal in terms of arrays of dish)ca- 
tions but such a realistic case is mathematically 
untractal)le. I t  behooves us, then, to pursue the crude 
mosaic block model since it may yield mathematical 
expressions which intrinsically contain the physics of 
the problem and are accurate enough for the bulk 
of the problems encountered by the X-ray physicist 
and crystallographer. 

In the mosaic block model a single crystal is divided 
into approximately equal small blocks (dimension 

to) with ncighboring blocks tilted with rcspect to 
each other so they do not simultaneously satisfy the 
Bragg conditions for any specific X-ray. Each mosaic 
block consists of a perfect array of atoms. The crystal 
is (tescribed, then, in terms of thc size of the bh)cks 
and the angular distribution between the blocks. For 
convenience the regions of misfit betwecn the blocks 
is considered void. 

In calculating the integratcd intensity of X-rays 
diffracted from a crystal one implicitly proceeds by 
calculating the diffraction from a frcc atom first. The 
amplitude of the scattered wave (in units of e2/mc 2) 
is commonly called the atomic scattering factor, f, 
and the intensity of scattered X-rays is proportional 
to J"~(e2/mc2) 2. When the atom becomcs part  of a 
crystal the scattered amplitude of a unit cell of that  
crystal is called the structure factor, F(e'~/mc'Z), and 
is a sum of the atomic scattering factors of the atoms 
in the unit cell wcighted according to thcir phases. 
The calculation of the integrated intensity of a Bragg 
reflection of a crystal, however, can be beset with 
difficulties. Only in the limit of cxtremcly small 
mosaic blocks and very large angular tilts between 
the mosaic t)locks is the intcgratcd intensity propor- 
tional to F2(e-'/mc'Z) 2. For such a single crystal in 
symmetrical reflection the integrated intensity, E, of 

a Bragg reflection is independent of the size and angular 
distribution of the mosaic blocks and is given by 

E @ I =  IF[2(e'2/mc2)223Na (1 + cose 20)/(2 sin 20) 
×(exp [-2MJ/2#)=(~/2# (1) 

ideally imperfect single crystal in symmetrical reflection. 

Equation (1) is derived for a crystal intercepting 
the entire monochromatic X-ray beam (wavelength ~t) 
and one thick enough so that  the entire X-ray beam 
is attenuated. N is the number of unit cells per cubic 
centimeter, exp [ - 2 M ]  the Debye-Waller temper- 
ature factor, 0 the Bragg angle, (o the angular velocity 
of the crystal as it is rotatcd through the Bragg angle, 
I the number of monochromatic X-rays per unit time 
incident upon the crystal and tt the linear absorption 
coefficient commonly determined by measuring the 
exponential at tenuation of a thin foil of the material. 
The factor (1 +cos 2 20)/2 represents the average over 
the directions of polarization of an initially un- 
polarized beam incident upon the crystal. 

If the crystal is perfect (one large mosaic block) 
the integrated intensity of an initially unpolarized 
beam is again calculable and is now proportional to 
F(e2/mc'~). It  is 

Eo~ ~ 8LF!e2).2N exp l - M ]  
. . . . . . . . . .  

I = 37~mc ~ sin 20 

x [ ( 1 -  2z,) + cos 20(1 - 2x~)] (2) 

ideally perfect crystal in symmetrical reflection 

where the terms ~ (  = p/2IF:,N2 exp [-M]e2/mc 2) and 
z~(=lz/2[FlN2 cos 20 exp [-M]e'2/mc 2) account for 
the absorption in the crystal of the two states of 
polarization and are generally small. As in the ideally 
imperfect crystal, equation (2) applies to the case of 
a symmetrically cut thick crystal intercepting the 
entire X-ray beam. Since the physicist and crystallo- 
grapher are generally interested in determining F, 
either an ideally imperfect or an ideally perfect crystal 
will suffice for this measurement. For a particular 
Bragg reflection the ideally imperfect crystal (equation 
(1)) gives the maximum integrated intensity and the 
ideally perfect crystal (equation (2)) gives the rain- 
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inmm, the ratios generally being about an order of 
magnitude. All real crystals, though, give an integrated 
intcnsity somewhere between equations (1) and (2) 
and any rcduction in integrated intensity from that 
given by equation (1) is called extinction. The deter- 
mination of the integrated intensity in thcse intcr- 
mediate cases in our present interest. 

It is traditional to consider two types of extinction, 
one in which the mosaic blocks bccome too large, 
commonly called primary extinction and one in which 
the angular distribution between blocks becomes too 
small, commonly called secondary extinction. In prin- 
ciple either one or both can be present. Conceptually 
(me can understand extinction by bearing in mind 
that equation (l) is derived for the case where Bragg 
scattering is so weak that the X-ray beam is attenuated 
almost entirely t)y processcs othcr than Bragg scatter- 
ing (like fluorescence and Compton scattering). If the 
mosaic blocks become too large or if the angular 
distribution of mosaic blocks bccomes too small then 
Bragg scattering may comprise a significant fraction 
of the attenuation when the crystal is set at the 
Bragg anglc. Under these conditions the scattered 
wave may undergo a second (or further) Bragg scat- 
tcring before it emerges from the crystal and this 
rcduces the integrated intensity entering the counter. 
In order to calculate the integrated intensity within 
the framework of the mosaic bl()ck model one must 
know the size and angular distribution of mosaic blocks. 
Unfortunately one can not always determine these 
quantities independently. 

In proceeding with this t)rol)lem it is convenient 
to considcr our mcasurements on single crystals and 
powders separately since the single crystal case affords 
us the possibility of measuring separately the ap- 
proximate angular distril)ution of mosaic blocks. 
This leaves the mosaic block size to as the only un- 
known in evaluating the data whereas there are three 
unknowns in evaluating the powder data (see below). 

Single crystals 
It has generally been assumed and our measurelnents 
concur that the angular distribution of mosaic t)loeks 
can be approximated by the Gaussian distribution 

W(,,'I) = l,(2)g exp ( -  2,~g~d~) (3) 

angular distribution of mosaic blocks 

where al is the angular deviation from the peak in the 
distribution function, and 0.664/g. is the full width at 
half maximum. For such a Gaussian distribution of 
very small mosaic Mocks the right side of equation (1) 
is reduced by the secondary extinction factor* 

S _~ [1 +0.87 (Qg,il,)-o.os(Qg/tx)"-]-~ (4) 
secondary extinction factor for thick crystals. 

. . . . . . . . . . .  

* This factor rel)resents a graphical in tegrat ion of equat ion 
(4.27) of Zaehariasen (1944). 

If this factor is very close to unit,3; (Qg,.t, < 1) then 
the crystal is devoid of secondary extinction and 
equation (1) can be used directly t. 

If the mosaic blocks arc not very small then equation 
(1) is reduced by the primary extinction fa.etor ap- 
proximately given as 

P _~ (tanh A)/A 
(5) 

A = (e'2/'mc ",-) (;tlF~it0NK exp [ -  M]) 
primary extinction factor, 

Zachariasen (1944) equation (3-167) 

where t0 is the size of the mosaic blocks. If neither 
primary nor secondary extinction are negligible then 
the right side of equation (1) is multiplied by the 
product of S and P. 

In principle it is possible to measure independently 
the unknown parameters in S and P (i.e. g and t0). 
g can be measured from the shape of the rocking 
curve while to can be measured from the true width, 
zl0, of the diffracted line by using the well known 
expression 

AO ~= k/to cos 0. (6) 

In practice, though, only the shape of the rocking 
curve is readily measured. If to is large enough to give 
appreciable primary extinction (to> 10 -4 em.) then A0 
is too small to measure without considerable effort. 

X-Ray I 
Source I 

Slit 

Fe(11 O) 

P i n h o l e @  

, 

I Ge(220) Pinhole 

Fig. 1. A schematic d iagram of the geometrical  a r rangement  
in the single-crystal measurements .  

It  is assumed in the derivation of equation (4) that: 
each X-ray experiences the distribution function of 
equation (3) as it penetrates the crystal. Since the 
depth of penetration is approximately 1/t~ it is desir- 
able to measure the rocking curve with a beam of 
X-rays illuminating an area of the crystal no larger 
than--~ (1//.i) 2. If the X-ray beam illuminates too 
large an area then large scale distortions or non- 
uniform distributions of g will yield an apparent 
rocking curve that is too large. Thus in our experiment 
the beam was made to pass through two pin holes 

. . . . . . . . . .  

t ]':(luations (1) and (4) are correct for any specific photon,  
prox iding (l + cos 2 20)/2 is replaced by the appropria te  polar- 
ization factor K 2, (cos 2 20 and uni ty)  for the two state, s of 
polarization. One then mus t  average over the directions of 
polarization. The factor  (l+eos220)/2 in equat ion (1) is 
('oI'reet if S =  1 (no secondary extinct ion) bu t  a proper aver- 
aging of the polarization for S ~  1 leads to more cumbersome 
expressions. Sin~,e equat ion (4) is a sh)wly wlrying funeti(m 

of Q the use of equat ions  (1) and (4) as they  are given will 
lead to errors of no more than  about  15'?{, in S. For  a{.eurate 
work, though,  this m a t t e r  Inust b ( ~  considered. 
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(Fig. 1) so tha t  the i l luminated area was approximate ly  
10 .4 cm. e. An ideal ly perfect Ge (220) crystal was 
chosen for the monochromator  since it has a very 
narrow rocking curve and its lattice spacing is close 
to the lattice spacing of our sample,  F e ( l l 0 ) ,  
[Ge(220) d = 2 . 0 0  A; F e ( l l 0 )  d = 2 . 0 4  A]. The similar- 
i ty  in lattice spacings and the use of the crystals in 
the parallel  position (Fig. 1) v i r tual ly  e l iminated all 
errors due to the finite geometrical and wavelength 
resolution. The da ta  is placed on an absolute basis 
by  measuring directly the in tens i ty  of the mono- 
chromatic radiat ion diffracted from the Ge crystal. 
Uncertaint ies  in the atomic scattering factor and HSnl 
(dispersion) corrections for Fe lead to errors of about  
3% in calculating E from equat ion (1) but  this is 
small  compared to the scatter in our data.  

There are three parameters  in equations (4) and (5) 
tha t  can be varied in a measurable  fashion; )., the 
wavelength;  0.664/g., the width of the angular  dis- 
t r i tmtion of mosaic blocks; and F ,  the structure 
factor. However, the dependence of S and P on F 
are quite similar  and such var ia t ion offers little 
oppor tuni ty  to assess the relative contr ibut ion of 
p r imary  and secondary extinction. On the other hand  
the wavelength dependence is marked ly  different since 
P approaches un i ty  as 2 approaches zero and S 
approaches zero as 2 approaches zero. While the 
wavelength dependence alone can dist inguish qualita- 
t ively between the cases of p r imary  and secondary 
extinction, only a measure of g and to can provide 

- -  Ge 220 
Fe 110 

? 

~'15 
.~_ 

. _  

~10 

/, 

0 I I I _ L - " (  ~ I x - -L  I I I 
8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 

/ I  (In minutes of arc) 

Fig. 2. The  rocking curve  ( 1 , - - l )  of a Gc (220) crys ta l  and 
of two spots  on the  Fe ( l l 0 )  c rys ta l  used in our  measure-  
ments .  Cu K a  rad ia t ion  was employed  with the  g e o m e t r y  
of Fig. 1. 

all the quanti t ies  required for an absolute determina- 
tion of the integrated intensity.  Only g was deter- 
mined in the present exper iment  and it was varied 
by selecting different spots on the surface of the 
crystal. An ewduat ion of the data,  though, was not 
unduly  hampered by the lack of an independent  
measurement  of to since to was apparen t ly  not too 
large in our samples. 

Two Fe crystals were employed, both grown from 
the melt  by  the addit ion of a small  percentage 
(--. 1-5 at .%) of A1 to close the 7 loop. One crystal 
had a rocking curve of approximate ly  two rain. of arc, 
quite narrow for a crystal grown from the melt, and 
the second crystal was cold rolled to increase the 
rocking curve to about  fifteen min. of arc. In  Fig. 2 
are shown two of the rocking curves of the first iron 
crystal taken with Cu K~ radiat ion at two different 
spots on the surface. Variations in width by  as much 
as a factor of two were observed over the surface. 
The rocking curve of an ideally perfect Ge (220) 
crystal is shown for comparison. I ts  full width at half 
m a x i n m m  (20 see.) compares favorably  with the cal- 
culated compound width of 19 sec. for the double 
crystal ar rangement  (~  13 sec. for a single ideally 
perfect Ge (220) crystal). 

I . . . . .  

2"5;- 

2"0 

1.5 _ ~ / /  " 

1 •0• 
0"5 1:0 

/ 

Qg/u 

 co} 
~ C r  CrystaC1 
x Mo 
o Ag 

v Co-Crystal"2 

I% 2Lo 

Fig. 3. The  rat io  of the  calcula ted in tegra ted  in tens i ty  (no 
ex t inc t ion)  to tile observed  in tens i ty  of the Fe ( l l 0 )  single- 

c rys ta l  ref lect ion as a func t ion  of Qg/t~. The  da t a  is cor- 
rec ted  for the effect  of seconda, 'y ex t inc t ion  on the a p p a r e n t  
half  width  of the rocking curve.  In  addi t ion  an app rop r i a t e  
averag ing  for the  two s ta tes  of polar iza t ion  has been made.  
The  solid line is the theore t ica l  curve  of equa t ion  (4). 

The results of our measurements  are shown in Fig. 3 
in which the ratio R, of the intensities calculated from 
equation (1) to the observed intensities are plot ted 
as a function of ((2q'F) the a rgument  in equat ion (4). 
The reciprocal of this ratio directly yields the product  
of P and S, i.e. 

calculated in tens i ty  (equation (1)) 1 
R = observed in tens i ty  . . . . .  P x S (7) 

Since g for each point  in Fig. 3 is obtained from the 
observed widths at half  m a x i m u m  a correction must  
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be applied since secondary extinction distorts the line 
shape. In  the presence of secondary extinction the peak 
of the rocking curve is reduced more than  the wings 
so t ha t  there is an apparen t  increase in the width. 
In  symmetr ical  reflection the t rue width at  half 
max imum of a thick crystal is related to the observed 
width t>y 

Observed width/True width % 1 

+o.31  (Qg//~) - o.o6.5 (Q.q/t,)" 
graphical integration of equation (4.27), 

Zachariasen (1944). 

(8) 

The maximum correction applied to the da ta  of Fig. 3 
is about  30% in width. 

Over a wide range of values of R a superficial 
inspection of the da t a  in Fig. 3 indicates a general 
agreement  between theory  and experiment  by sett ing 
P - - 1  (no pr imary  extinction, secondary extinction 
only). Tha t  the da t a  could not  be f i t ted to an ex- 
pression for p r imary  extinction only ( S = l )  can be 
seen from inspection. If  only p r imary  extinction were 
present the values of R would increase monotonical ly 
with increasing wavelength whereas we see an inver- 
sion between Mo K~x (0.71 /~) and Ag K a  (0.56 A). 
In  addit ion the da ta  for Co K~ cover a range of values 
of R = l - 7  to 2.3 or valucs of to in equation (5) of 
about  3-2 to 4 .6x  l0 -4 cm. while the da ta  for the 
same crystal  t aken  with Ag K~ (R = 1.8 to 2.0) wouhl 
require values of to of 7-5 to --~ 8.7 x l0 -4 cm. Since 
the value of t0 must  be indepcndcnt  of the radiat ion 
chosen we must  exclude the possibility of appreciable 
p r imary  extinction. 

Our conclusion is tha t  secondary extinction is 
predominant  in our crystals and the mosaic block 
model m a y  be moderate ly  successful for calculating 
integrated intensities in single crystals subject  to 
extinction. 

P o w d e r s  

An evaluat ion of extinction in powders is considerably 
more complicated. In  each powder particle any  
fraction of its volume tha t  can be considered to be a 
single crystal  no longer fulfills the conditions of a 
symmetr ica l ly  cut thick crystal.  In  terms of the 
mosaic block model one would specify a powder 
sample according to the dimension of the mosaic 
blocks to, the angular  distr ibution of the blocks 
(equation (3)), and  the thickness, T, of the small 
volume in each powder particle tha t  can be considered 
to be a single crystal.  We shall assume these three 
parameters  are approximate ly  constant  throughout  
each specimen to be examined. While the conditions 
of symmetr ical  reflection are not tact  one can average 
this in a powder sample. Unfor tuna te ly  none of thcse 
three parameters  are readily measurable  in a powder 
specimen al though one can set an upper limit to T 
as not to exceed the size of the individual particles 
in an unsintered powder specimen. Since the size of 

the mosaic blocks are a reflection of the internal 
s ta te  of perfection of the sul)stanee, it is also quite 
reasonable to assume tha t  the size of the mosaic 
blocks are no larger in a powder specimen than  in a 
single crystal  (of the same material)  t ha t  has been 
annealed in a similar manner.  As p r imary  extinction 
played a negligible role in our single crystal  measure- 
ments  we shall assume at  the outset  tha t  this is the 
case for our powders so tha t  we are pr imari ly  con- 
cerned with the two unknown parameters  g and T. 
Again referring to equation (4.27) of Zachariasen we 
must  calculate the integrated intensi ty of a crystal  
of finite thickness, T, averaged over the angle between 
the diffracting planes and the surface of the crystal 
(unsymmetr ical  reflection).* While we have been 
unable to evaluate  this in closed form an approximate  
analyt ic  fit (good to about  20%) leads to a rat io of 
in tegrated intensi ty without  extinction to the inte- 
gra ted  intensi ty with extinction given by 

R%[(I+½/uT+g(2T)/(I+½#T)] (9) 

,secondary extinction in powders. 

The experimental  s tudy of extinction in powders 
was made on Fe powders by comparing the integrated 
intensi ty ratios, R, of the first Bragg reflection from 
cold-worked samples to t ha t  from annealed samples 
as a function of X- ray  wavelength (the cold-worked 
sample being essentially free of extinction). The 
experiments  were made on 5 micron carbonyl Fe 
powder and 30 micron ferrovac Fe filings, two samples 
of each being lightly compressed to form a compact.  
One of each sample was left in a cold-worked state,  
the other was annealed a t  850 °C. in vacuum for 1 hr. 
Thc intensities for the first Bragg reflection in each 
case were obtained with the following radiat ions- 
Ag K.~, Mo K,~, Cu Kfl and K:~, Ni K~,  Co K~ and 
Cr K~. Except  for the case of Mo K~x which was 
monochromated  by a single bent LiF crystal,  all 
radiat ions were unfiltered. A sodium iodide, thallium- 
ac t iva ted  scintillation counter was used for detection, 
and a specimen spinner was used to ro ta te  the sample 
in its own plane during the measurements .  

The integrated intensities wcre taken  to be directly 
proportional  to the peak areas obtained by integrat ing 
a chart  recording of the reflection over a sufficiently 
wide angular  range such tha t  the background ap- 
peared constant.  While this method of integrat ing 
intensi ty measurements  is dependent  upon the selec- 
t ion of a background level, the errors tend to cancel 
since one is taking ratios of the same reflection. The 
thermal  diffuse scattcring correction for this reflection 
is negligible sincc the Debye-Wal le r  factor is close to 
unity.  In  Table 1 the obscrved ratios are compared 
to those calculated from equat ion (9) with the param- 

* For unsymmetrical reflection replace 

/~0/70 by (tto/2)(1--7o/!THl) 
in equation (4.27) of Zachariascn (1944). 
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Table  1. The observed ratio, R(obs.),  of the 110 integrated intensity of the cold-worked 
to annealed powder samples of ferrovac and cnrbonyl Fe 

These are ('omFared to the ratios eMeulated from equation (9) with the parameter g and T a(tjusted to give a good fit. 
A value of g = 1200 corresponds to a. mosaic block distribution of about 2 minutes in full width 

30 micron* ferrovae 5 micron* earbonyl Fo 
, ,  ^ 

). (A) (-2 (c'n. -t) It (('m.-]) R(obs.) R(calc.) Dcviati(£t R(obs.) R(cah,.) Deviation 
'2. '291 1-03 9O6 2.22 2.22 - -  3" 64 3.34 -- 9° o 
!.7111 0-538 465 1.83 1-80 - -  27u 3 - 1 9  3-11 - -  ')(' - - ,  o 

1.659 0"710 3000 1.43 1.43 - -  1.54 1.54 - -  
1.542 0"614 2500 1.4!) 1-42 -- ~)'- ' o I "61 1 '55 -- 4 °/,. 
1.39'2 0.495 1860 1.65 1.41 --]~,o~° 1.93 1.59 --21% 
0-710 0-171 '2(.)5 1.34 1.28 -- 5(!o 1.92 1.9'2 - -  
0.561 0.108 143 1.25 1.19 -- 5? o 1 "67 1"90 + 14% 

g = 1300 :7 = 1200 
T =  1-56 x 10 -3 era. T= 1.4 x 10 -2 (.m. 

* The I)article sizes given are. for unannealed samples. After annealing considerable grain growth was observed in the earbonyl 
Fc due to sintering. 

e ters  T and  g a d j u s t e d  to give a good fi t  for each 
sample .  Over  ve ry  wide ranges  of R, Q, a n d  # e q u a t i o n  
(9) gives ag reemen t  to abou t  20°o. S imi lar  measure-  
men t s  were made  on Cu a n d  brass powders  (Fig. 5) 
for which an  even be t t e r  f i t  was ob t a ined  but  these  
powders  did no t  p rov ide  as cr i t ical  a t es t  of equa t ion  
(9) since wave leng ths  were not  ava i lab le  for measure-  
men t s  close to e i ther  side of the  abso rp t ion  edge. 
Around  the  absorp t ion  edge Q var ies  s m o o t h l y  and  
u varies  a b r u p t l y  p rov id ing  a good tes t  of e q u a t i o n  (9). 

F 

4"0~ 

i 
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R3"O 

) -  

/ - ' " C r K r (  

..." "Co Ka 
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/ 
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1 -  / .  
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/ /  

( ~ ' ~ C  r K'o: 
2"0 i -  ~ S ~ M o  Ka o C u  K f l  

'. . - ~ - g K .  °coK~  o o c~ K~ 
~ . 7  .." o CuKa N i K a  

: ~ ° ~ / ' ° M °  K a  N i  Ka 
L L J  " A g  Kcc _ . I 

1 "0 2"0 . . . . . . . . . . .  3!0 
A/tanh A 

Fig. 4. The ratio of the integrated intensities of the 110 
reflection in two samples of cold-worked and annealed Fe 
powders taken at various wave-lengths and plotted against 
the primary extinction correction A/tanh A. (Circles: fer- 
rovac; squares: carbonyl Fe). 

An a t t e m p t  was made  to fi t  the  i ron powder  d a t a  
to the  p r i m a r y  e x t i n c t i o n  express ion of the  form of 
e q u a t i o n  (5) and  th is  is shown in Fig.  4. The ag reemen t  
is exceed ing ly  poor in regions of h igh  absorp t ion .  
(An a t t e m p t  to include abso rp t ion  in equa t ion  (5) 
improved  the  ag reemen t  on ly  s l ight ly) .  No a t t e m p t  
was made  to mix  some p r i m a r y  ex t i nc t i on  wi th  the  
s econda ry  e x t i n c t i o n  in order  to improve  the  agree- 
m e n t  in Tab le  1 since the  t heo ry  is too crude to ju s t i fy  
this .  

A C  1 5 - - 7 3  

D i s c u s s i o n  

These resul ts  suggest  t h a t  secondary  ex t inc t ion  was 
p r e d o m i n a n t  in our samples  a n d  t h a t  equa t ions  (4) 
and  (9) provide  a reasonable  descr ip t ion  of s econda ry  
ex t i nc t i on  in single c rys ta l s  and  powders.  Since the  
Fe  single crys ta ls  selected for our measu remen t s  had  
a re la t ive ly  high degree of perfect ion we believe these 
resul ts  have  more general  appl icab i l i ty .  However  one 
mus t  be caut ious  not  to a p p l y  equa t ions  (4) and  (9) 
to samples  whose degree of perfec t ion  approaches  
t h a t  of an  idea l ly  perfect  crysta l .  Un t i l  more cx- 
pe r imen ta l  d a t a  is ava i lab le  we suggest  the  use of 
equa t ion  (4) for single c rys ta l s  whose rocking curve 
is a t  least  twice as broad as t h a t  of a perfect  c rys ta l  
(full w id th  a t  half  m a x i m u m  of an  idea l ly  perfect  
c rys ta l  = 2N),2[F! (e2/mc 2) exp [ -  M]/~ sin 20). 

As m e n t i o n e d  above,  the  c rys t a l log raphe r  and  
phys ic i s t  are in te res ted  in de t e rmin ing  F ,  the  s t ruc tu re  
factor ,  and  to da te  no m e t h o d  p rov id ing  an  accura te  
correct ion for e x t i n c t i o n  is known.*  I n  general  the  
expe r imen ta l i s t  wisely a t t e m p t s  to ob ta in  samples  free 
of e x t i n c t i o n  and  we suggest  t h a t  equa t ions  (4), (8) 
a n d  (9) can serve as a guide. I n  the  case of a single 
c rys ta l  a m e a s u r e m e n t  of the  rocking  curve over an  
area--~ (1/#) 2 and  a crude e s t ima te  of F enables  one 
to eva lua te  ex t i nc t i on  f rom equa t ions  (4) and  (8) to 
w i th in  abou t  20%. If  the  sample  a n d  wave leng th  can 
be chosen so t h a t  S is e s t i m a t e d  to be w i th in  5% of 
u n i t y  t hen  app l i ca t ion  of the  secondary  ex t inc t ion  
correct ion (equat ion  (4)) leads to an  u n c e r t a i n t y  of 
abou t  1%. If  the  ex t i nc t i on  is cons iderab ly  large,' and  
accura te  in tens i t ies  are desired t h e n  an  a t t e m p t  mus t  
be made  to a l te r  the  s t a t e  of the  c rys ta l  b y  p las t ic  or 
elast ic deformat ion .  Once the  absolu te  m a g n i t u d e  of 
F for the  s t rong  peaks  is measured  in a deformed 
c rys ta l  the  weak outer  peaks  can be de t e rmined  from 
an  annea led  c rys ta l  b y  de t e rmin ing  the  pa r ame te r s  

. . . . . .  

* If tile extinction is small the method of Chandrasekhar 
(1960) in varying tile polarization factor in equations (4) and 
(5) offers tile possibility of making the correction. 
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of equat ion (4) from the extinction of the inner peaks. 
In  addit ion a wavelength s tudy  m a y  aid in evaluat ing 
the amoun t  of extinction. 

In  the case of powders, equat ion (9) can serve as a 
guide for selecting the opt imum conditions to minimize 
extinction but  only a wavelength dependent  s tudy  is 
really sat isfactory in est imat ing the magni tude  of R. 
Very fine cold-worked metal  powders (Z < 30) appear  
to be free of extinction but a lack of extinction 
measurements  on non-metallic powders forbids us 
from assessing the problem in such cases. 

We shall conclude by mentioning some other work 
in this field. Weiss & DeMarco (1958) made a l imited 
wavelength s tudy  of the integrated intensities of 
several crystals (from 0.5 A to 0.9 A) and employed 
a p r imary  extinction correction (equation (5)). The 
absolute value of F was determined by extrapolat ing 
to zero wavelength,  for which P =  I. From our current  
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Fig. 5. The difference in integrated intensity of cold-worked 
and annealed a brass powders (divided by the cold-worked 
intensity) taken at various wave-lengths and plotted as a 
function of ).3f2o(1 +cos 2 20)/2t~ sin 20. The points on the 
smooth curve are the data of Authier & Warren (1956). 
In both experiments the brass was annealed at 500 °C. 
for 2 hours. 

measurements  it appears  t ha t  this extrapolat ion was 
unjustified. I f  secondary extinction is predominant in 
single crystals no procedure for extrapolation can correct 
for it. 

Authier  & Warren  (1956) measured the extinction in 
Fe and brass powders as a function of wavelength and 
concluded tha t  their da ta  exhibited a monotonic de- 
pendence on ~)/# (plotted as 2ff2(1 + cos220)Q/2#sin20 ; 
~)=density). While Q/# is the a rgument  in the ex- 
pression for secondary extinction in infinitely thick 
single crystals (equation (4)) it fails to account for 
the finite thickness of the single crystal  grains in a 
powder specimen as does equat ion (9). We have 
repeated the Authier  & Warren  measurements  and 
have been unable to reproduce their da ta  nor confirm 
the monotonic dependence on ~)//z. Both their meas- 
urements  and ours are shown in Fig. 5 for ~ brass. 
As mentioned above equat ion (9) offers a bet ter  
description of extinction in these samples. 

Summary 

The mosaic block model appears  to yield extinction 
expressions t ha t  are applicable to real crystals. 
Equat ions  (4) and (8) are applicable to single crystals 
whose rocking curve is at  least several t imes tha t  of 
an ideally perfect crystal  and equation (9) is ap- 
plicable to powders. The principal value of equations 
(4) and (9) are their use as a guide for selecting those 
conditions which minimize extinction. For  quant i ta-  
t ive work equations (4) and (9) should only be 
employed when extinction is small. 
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