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Experimental Determination of Extinction in Crystals

By J. J. DE Marco axp R. J. WEiss
Materials Research Laboratory, U.S. Army Materials Research Agency, Watertown 72, Massachusetts, U.S. A.

(Recelived 6 October 1961 and in revised form 19 February 1962)

X-ray measurements of the integrated intensities of Fe single crystals and Fe powders support the
idealized mosaic block model for calculating extinction. Sccondary cxtinction was shown to be
predominant in these specimens. Expressions are given which can serve as a guide for estimating
extinction and for sclecting those paramcters which minimize extinction.

Introduction

In this paper we report the results of measurements
on single crystals and powders undertaken to compare
the observed diffracted intensities with those cal-
culated for the traditional mosaic block model of a
crystal. The mosaic block model was introduced by
Darwin (1914) solely for mathematical convenience.
Today we have an approximate idea of the structure
of an imperfect crystal in terms of arrays of disloca-
tions but such a realistic case is mathematically
untractable. It behooves us, then, to pursue the crude
mosaic block model since it may yield mathematical
expressions which intrinsically contain the physics of
the problem and are accurate enough for the bulk
of the problems encountered by the X.ray physicist
and crystallographer.

In the mosaic block model a single crystal is divided
into approximately equal small blocks (dimension
~ tp) with neighboring blocks tilted with respect to
each other so they do not simultaneously satisfy the
Bragg conditions for any specific X-ray. Each mosaic
block consists of a perfect array of atoms. The crystal
is described, then, in terms of the size of the blocks
and the angular distribution between the blocks. For
convenicnce the regions of misfit between the blocks
is considered void.

In calculating the integrated intensity of X-rays
diffracted from a crystal one implicitly proceeds by
calculating the diffraction from a free atom first. The
amplitude of the scattered wave (in units of e2/mc?)
is commonly called the atomic scattering factor, f,
and the intensity of scattered X-rays is proportional
to f2(ef/mc?)2. When the atom becomes part of a
crystal the scattered amplitude of a unit cell of that
crystal is called the structure factor, F(e2/me?), and
is a sum of the atomic scattering factors of the atoms
in the unit cell weighted according to their phases.
The caleulation of the integrated intensity of a Bragg
reflection of a crystal, however, can be beset with
difficultics. Only in the limit of extremely small
mosaic blocks and very large angular tilts between
the mosaic blocks is the integrated intensity propor-
tional to F2(e?/me?)2. For such a single crystal in
symmetrical reflection the integrated intensity, E, of

a Bragg reflection is independent of the size and angular
distribution of the mosaic blocks and is given by

Eo/I=|F|2(e?/mc?)2A3N2 (1 + cos? 26)/(2 sin 26)

x (exp [—2M|2u)=Q[2u (1)
ideally imperfect single crystal in symmetrical reflection.

Equation (1) is derived for a crystal intercepting
the entire monochromatic X-ray beam (wavelength 4)
and one thick enough so that the entire X-ray beam
is attenuated. & is the number of unit cells per cubic
centimeter, exp [—2M] the Dcbye-Waller temper-
ature factor, 0 the Bragg angle, w the angular velocity
of the crystal as it is rotated through the Bragg angle,
I the number of monochromatic X-rays per unit time
incident upon the crystal and u the linear absorption
coefficient commonly determined by measuring the
exponential attenuation of a thin foil of the material.
The factor (14 cos? 20)/2 represents the average over
the directions of polarization of an initially un-
polarized beam incident upon the crystal.

If the crystal is perfect (one large mosaic block)
the integrated intensity of an initially unpolarized
beam is again calculable and is now proportional to
Fezjmc?). 1t is

Ew 8|F|e2}2N exp [— M]
1= 3amc? sin 26
X [(1—235)+cos 20(1 —2x,)] (2)
ideally perfect crystal in symmetrical reflection

where the terms » (= u/2[F{N A exp [~ M]e?/mc?) and
#.(= /2| F|N A cos 20 exp [ — Me2jme?) account for
the absorption in the erystal of the two states of
polarization and are generally small. As in the idecally
imperfect crystal, equation (2) applies to the case of
a symmetrically cut thick crystal intercepting the
entirc X-ray beam. Since the physicist and crystallo-
grapher are gencrally interested in determining F,
either an ideally imperfect or an ideally perfect crystal
will suffice for this measurement. For a particular
Bragg reflection the ideally imperfect erystal (equation
(1)) gives the maximum integrated intensity and the
ideally perfect crystal (equation (2)) gives the min-
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imum, the ratios generally being about an order of
magnitude. All real crystals, though, give an integrated
intensity somewhere between equations (1) and (2)
and any reduction in integrated intensity from that
given by equation (1) is called extinction. The deter-
mination of the integrated intensity in these inter-
mediate cases in our present interest.

It is traditional to consider two types of extinction,
one in which the mosaic blocks become too large,
commonly called primary extinction and one in which
the angular distribution between blocks becomes too
small, commonly called secondary extinction. In prin-
ciple either one or both can be present. Conceptually
one can understand extinction by bearing in mind
that equation (1) is derived for the case where Bragg
scattering is so weak that the X-ray beam is attenuated
almost entirely by processes other than Bragg scatter-
ing (like fluorescence and Compton scattering). If the
mosaic blocks become too large or if the angular
distribution of mosaic blocks becomes too small then
Bragg scattering may comprise a significant fraction
of the attenuation when the crystal is set at the
Bragg angle. Under these conditions the scattered
wave may undergo a second (or further) Bragg scat-
tering before it emerges from the crystal and this
reduces the integrated intensity entering the counter.
In order to calculate the integrated intensity within
the framework of the mosaic block model one must
know the size and angular distribution of mosaic blocks.
Unfortunately one can not always determine these
quantities independently.

In proceeding with this problem it is convenient
to consider our measurements on single crystals and
powders separately since the single crystal case affords
us the possibility of measuring separately the ap-
proximate angular distribution of mosaic blocks.
This leaves the mosaic block size fo as the only un-
known in evaluating the data whereas there are three
unknowns in evaluating the powder data (see below).

Single crystals

It has generally been assumed and our measurcments
concur that the angular distribution of mosaic blocks
can be approximated by the Gaussian distribution

W ()= (2)g exp (—2mg22) 3)
angular distribution of mosaic blocks

where  is the angular deviation from the peak in the
distribution function, and 0-664/g. is the full width at
half maximum. For such a Gaussian distribution of
very small mosaic blocks the right side of equation (1)
is reduced by the secondary extinction factor*

S[1+087(Qg/u) = 0-08(Qg/mp " (4)
secondary extinction factor for thick crystals.

* This factor represents a graphical integration of equation
(4-27) of Zachariasen (1944).
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If this factor is very close to unity (Qg;u < 1) then
the crystal is devoid of secondary extinction and
equation (1) can be used directlyt.

If the mosaic blocks are not very small then equation
(1) is reduced by the primary extinction factor ap-
proximately given as

P >~ (tanh 4)/4
A=(e2/mc) (A FitoNK exp [— M])

primary extinction factor,
Zachariasen (1944) equation (3-167)

where # is the size of the mosaic blocks. If neither
primary nor secondary extinction are negligible then
the right side of equation (1) is multiplied by the
product of § and P.

In principle it is possible to measure independently
the unknown parameters in § and P (i.e. ¢ and ).
g can be measured from the shape of the rocking
curve while ¢ can be measured from the true width,
A0, of the diffracted line by using the well known
expression

A6 >~ Aty cos 0 . (6)

In practice, though, only the shape of the rocking
curve is readily measured. If ¢ is large enough to give
appreciable primary extinction (fo>10-4 cm.) then /10
is too small to measure without considerable effort.

Fe(110)
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Fig. 1. A schematic diagram of the geometrical arrangement
in the single-crystal measurements.

It is assumed in the derivation of equation (4) that
each X-ray experiences the distribution function of
equation (3) as it penetrates the crystal. Since the
depth of penetration is approximately 1/u it is desir-
able to measure the rocking curve with a beam of
X-rays illuminating an area of the crystal no larger
than ~ (1/u)2. If the X-ray beam illuminates too
large an area then large scale distortions or non-
uniform distributions of g will yield an apparent
rocking curve that is too large. Thus in our experiment
the beam was made to pass through two pin holes

t Equations (1) and (4) are correct for any specific photon,
providing (14 cos? 20)/2 is replaced by the appropriate polar-
ization factor K2, (cos? 20 and unity) for the two states of
polarization. One then must average over the directions of
polarization. The factor (1+ecos?20)/2 in equation (1) is
correct if §=1 (no secondary extincetion) but a proper aver-
aging of the polarization for S+ 1 leads to more cumbersome
expressions. Since equation (4) is a slowly varying function
of @ the use of equations (1) and (4) as they are given will
lead to errors of no more than about 15°; in S. For accurate
work, though, this matter must be considered.
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(Fig. 1) so that the illuminated area was approximately
10-4 cm.2. An ideally perfect Ge (220) crystal was
chosen for the monochromator since it has a very
narrow rocking curve and its Jattice spacing is close
to the lattice spacing of our sample, Fe(110),
[Ge(220) d=2:00 A; Fe(110) d=2-04 A]. The similar-
ity in lattice spacings and the use of the crystals in
the parallel position (Fig. 1) virtually eliminated all
errors due to the finite geometrical and wavelength
resolution. The data is placed on an absolute basis
by measuring directly the intensity of the mono-
chromatic radiation diffracted from the Ge crystal.
Uncertaintics in the atomic scattering factor and Hénl
(dispersion) corrections for Fe lead to errors of about
3% in calculating £ from equation (1) but this is
small compared to the scatter in our data.

There are three parameters in equations (4) and (5)
that can be varied in a measurable fashion; 2, the
wavelength; 0-664/g., the width of the angular dis-
tribution of mosaic blocks; and F, the structure
factor. However, the dependence of S and P on F
are quite similar and such variation offers little
opportunity to assess the relative contribution of
primary and secondary extinction. On the other hand
the wavelength dependence is markedly different since
P approaches unity as A approaches zero and S
approaches zero as A approaches zero. While the
wavelength dependence alone can distinguish qualita-
tively between the cases of primary and secondary
cxtinction, only a measure of ¢ and f can provide
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Fig. 2. The rocking curve (1, —1) of a Ge (220) crystal and
of two spots on the Fe (110) erystal used in our measure-
ments. Cu K« radiation was employed with the geometry
of Fig. 1.
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all the quantities required for an absolute determina-
tion of the integrated intensity. Only g was deter-
mined in the present experiment and it was varied
by selecting different spots on the surface of the
crystal. An evaluation of the data, though, was not
unduly hampered by the lack of an independent
measurement of fp since f{, was apparently not too
large in our samples.

Two Fe crystals were employed, both grown from
the melt by the addition of a small percentage
(~1-5 at.%) of Al to close the  loop. One crystal
had a rocking curve of approximately two min. of arc,
quite narrow for a crystal grown from the melt, and
the second crystal was cold rolled to increase the
rocking curve to about fifteen min. of arc. In Fig. 2
are shown two of the rocking curves of the first iron
crystal taken with Cu K« radiation at two different
spots on the surface. Variations in width by as much
as a factor of two were observed over the surface.
The rocking curve of an ideally perfect Ge (220)
crystal is shown for comparison. Its full width at half
maximum (20 sec.) compares favorably with the cal-
culated compound width of 19 sec. for the double
crystal arrangement (~ 13 sec. for a single ideally
perfect Ge (220) crystal).
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Fig. 8. The ratio of the calculated integrated intensity (no
extinction) to the observed intensity of the Fe (110) single-

crystal reflection as a function of Qg/u. The data is cor-
rected for the effect of secondary extinction on the apparent
half width of the rocking curve. In addition an appropriate
averaging for the two states of polarization has been made.
The solid line is the theoretical curve of equation (4).

The results of our measurements are shown in Fig. 3
in which the ratio R, of the intensities calculated from
equation (1) to the observed intensities are plotted
as a function of (§g/y) the argument in equation (4).
The reciprocal of this ratio directly yields the product
of Pand 8, i.e.

R - calculated intensity (equation (1)) 1 )
h T PxS

observed intensity

Since ¢ for each point in Fig. 3 is obtained from the
observed widths at half maximum a correction must
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be applied since secondary extinction distorts the line
shape. In the presence of secondary extinction the peak
of the rocking curve is reduced more than the wings
50 that there is an apparent increase in the width.
In symmetrical reflection the true width at half
maximum of a thick crystal is related to the observed
width by

Observed width/True width >~ 1

+0-31(Qg/ ) — 0-085 (Qg/w)*  (8)
graphical integration of equation (4-27),
Zachariasen (1944).

The maximum correetion applied to the data of Fig. 3
is about 30% in width.

Over a wide range of values of R a superficial
inspection of the data in Fig. 3 indicates a general
agreement between theory and experiment by setting
P=1 (no primary extinetion, secondary extinction
only). That the data could not be fitted to an ex-
pression for primary extinction only (S=1) can be
seen from inspection. If only primary extinction were
present the values of R would increase monotonically
with increasing wavelength whereas we see an inver-
sion between Mo Kx (0-71 A) and Ag Kx (0-56 A).
In addition the data for Co Kx cover a range of values
of R=1-7 to 23 or values of { in equation (3) of
about 3:2 to 4:6x10-%4 em. while the data for the
same crystal taken with Ag Kx (R=1-8 to 2:0) would
require values of #, of 7-5 to ~ 87 x 104 ecm. Since
the value of fy must be independent of the radiation
chosen we must exclude the possibility of appreciable
primary extinction.

Our conclusion is that secondary extinction is
predominant in our crystals and the mosaic block
model may be moderately successful for calculating
integrated intensities in single crystals subject to
extinction.

Powders

An evaluation of extinction in powders is considerably
more complicated. In each powder particle any
fraction of its volume that can be considered to be a
single crystal no longer fulfills the conditions of a
symmetrically cut thick ecrystal. In terms of the
mosaic block model one would specify a powder
sample according to the dimension of the mosaic
blocks to, the angular distribution of the blocks
(equation (3)), and the thickness, 7', of the small
volume in each powder particle that can be considered
to be a single crystal. We shall assume these three
parameters are approximately constant throughout
cach specimen to be examined. While the conditions
of symmetrical reflection are not met one can average
this in a powder sample. Unfortunately none of these
three parameters are readily measurable in a powder
specimen although one can set an upper limit to 7'
as not to exceed the size of the individual particles
in an unsintered powder specimen. Since the size of

DETERMINATION

OF EXTINCTION IN CRYSTALS

the mosaic blocks are a reflection of the internal
state of perfection of the substance, it is also quite
reasonable to assume that the size of the mosaic
blocks are no larger in a powder specimen than in a
single crystal (of the same material) that has been
annealed in a similar manner. As primary extinction
played a negligible role in our single crystal measure-
ments we shall assume at the outset that this is the
case for our powders so that we are primarily con-
cerned with the two unknown parameters g and 7.
Again referring to equation (4-27) of Zachariasen we
must calculate the integrated intensity of a crystal
of finite thickness, 7', averaged over the angle between
the diffracting planes and the surface of the crystal
(unsymmetrical reflection).* While we have been
unable to evaluate this in closed form an approximate
analytic fit (good to about 209%) leads to a ratio of
integrated intensity without extinction to the inte-
grated intensity with extinction given by

R[(1+4uT +9QT)/(1+ 3uT)] 9)

secondary extinction in powders.

The experimental study of extinction in powders
was made on Fe powders by comparing the integrated
intensity ratios, R, of the first Bragg reflection from
cold-worked samples to that from annealed samples
as a function of X-ray wavelength (the cold-worked
sample being essentially free of extinction). The
experiments were made on 5 micron carbonyl Fe
powder and 30 micron ferrovac Fe filings, two samples
of each being lightly compressed to form a compact.
One of each sample was left in a cold-worked state,
the other was annealed at 850 °C. in vacuum for 1 hr.
The intensities for the first Bragg reflection in each
case were obtained with the following radiations:
Ag Kx, Mo Kx, Cu Kf§ and K~, Ni Kx, Co Kx and
Cr Kx. Except for the case of Mo Kx which was
monochromated by a single bent LiF crystal, all
radiations were unfiltered. A sodium iodide, thallium-
activated scintillation counter was used for detection,
and a specimen spinner was used to rotate the sample
in its own plane during the measurements.

The integrated intensities were taken to be directly
proportional to the peak areas obtained by integrating
a chart recording of the reflection over a sufficiently
wide angular range such that the background ap-
peared constant. While this method of integrating
intensity measurements is dependent upon the selec-
tion of a background level, the errors tend to cancel
since one is taking ratios of the same reflection. The
thermal diffuse scattering correction for this reflection
is negligible since the Debye—Waller factor is close to
unity. In Table 1 the observed ratios are compared
to those calculated from equation (9) with the param-

* For unsymmetrical reflection replace

Hol7o bY (102} (1=2o/l71))
in equation (4-27) of Zachariasen (1944).
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Table 1. The observed ratio, R(obs.), of the 110 integrated intensity of the cold-worked
to annealed powder samples of ferrovac and carbonyl Fe

These are compared to the ratios caleulated from equation (9) with the parameter g and 7' adjusted to give a good fit.
A value of g=1200 corresponds to a mosaic block distribution of about 2 minutes in full width

30 micron* ferrovac

5 micron* carbonyl Fe

2 () Q (em. 7ty g (em.T1) R(obs.) R(cale.) Deviation R(obs.) R(cale.)  Deviation
2:291 1-03 906 2.22 2-22 — 3-64 3:34 — 99,
1791 0-538 465 1-83 1-80 — 20, 319 311 — 20,
1-659 0-710 3000 1-43 1-43 — 1-54 1-54 —
1-542 0-614 2500 1-49 1-42 — 50 1-61 155 —49
1-392 0-495 1860 1-65 1-41 — 179, 1-93 1-59 — 219,
0-710 0-171 295 1-34 128 — 5%, 1-92 1-92 —
0-561 0-108 143 1-25 1-19 — Y% 167 1-:90 + 149

g = 1300 g = 1200

T= 156 x 103 cm. T=14x10"2cm.

* The particle sizes given are for unannealed samples. After annecaling considerable grain growth was observed in the carbonyl]

Fe due to sintering.

eters 7' and ¢ adjusted to give a good fit for each
sample. Over very wide ranges of R, ¢, and u equation
(9) gives agreement to about 209%,. Similar measure-
ments were made on Cu and brass powders (Fig. 5)
for which an even better fit was obtained but these
powders did not provide as critical a test of equation
(9) since wavelengths were not available for measure-
ments close to either side of the absorption edge.
Around the absorption edge () varies smoothly and
(1 varies abruptly providing a good test of equation (9).
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Fig. 4. The ratio of the integrated intensitics of the 110
reflection in two samples of cold-worked and anncaled Fe
powders taken at various wave-lengths and plotted against
the primary extinction correction A/tanh A. (Circles: fer-
rovac; squares: carbonyl Fe).

An attempt was made to fit the iron powder data
to the primary extinction expression of the form of
equation (5) and this is shown in Fig. 4. The agreement
is exceedingly poor in regions of high absorption.
(An attempt to include absorption in equation (5)
improved the agreement only slightly). No attempt
was made to mix some primary extinction with the
secondary extinction in order to improve the agree-
ment in Table 1 since the theory is too crude to justify
this.
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Discussion

These results suggest that secondary extinction was
predominant in our samples and that equations (4)
and (9) provide a reasonable description of secondary
extinction in single crystals and powders. Since the
Fe single crystals selected for our measurements had
a relatively high degree of perfection we believe these
results have more general applicability. However one
must be cautious not to apply equations (4) and (9)
to samples whose degree of perfection approaches
that of an ideally perfect crystal. Until more ex-
perimental data is available we suggest the use of
equation (4) for single crystals whose rocking curve
is at least twice as broad as that of a perfect crystal
(full width at half maximum of an ideally perfect
crystal =2N 22| F|(e?/mc?) exp [— M)/ 7 sin 20).

As mentioned above, the crystallographer and
physicist are interested in determining F', the structure
factor, and to date no method providing an accurate
correction for extinction is known.* In general the
experimentalist wisely attempts to obtain samples free
of extinction and we suggest that equations (4), (8)
and (9) can serve as a guide. In the case of a single
crystal a measurement of the rocking curve over an
area ~ (1/u)? and a crude estimate of F enables one
to evaluate extinction from equations (4) and (8) to
within about 209%,. If the sample and wavelength can
be chosen so that S is estimated to be within 59, of
unity then application of the secondary extinction
correction (equation (4)) leads to an uncertainty of
about 19%. If the extinction is considerably larger and
accurate intensities are desired then an attempt must
be made to alter the state of the crystal by plastic or
elastic deformation. Once the absolute magnitude of
F for the strong peaks is measured in a deformed
crystal the weak outer peaks can be determined from
an annealed crystal by determining the parameters

* If the extinction is small the method of Chandrasekhar
(1960) in varying the polarization factor in equations (4) and
(5) offers the possibility of making the correction.
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of equation (4) from the extinction of the inner peaks.
In addition a wavelength study may aid in evaluating
the amount of extinction.

In the case of powders, equation (9) can serve as a
guide for selecting the optimum conditions to minimize
extinction but only a wavelength dependent study is
really satisfactory in estimating the magnitude of R.
Very fine cold-worked metal powders (Z < 30) appear
to be free of extinction but a lack of extinction
measurements on non-metallic powders forbids us
from assessing the problem in such cases.

We shall conclude by mentioning some other work
in this field. Weiss & DeMarco (1958) made a limited
wavelength study of the integrated intensities of
several crystals (from 0-5 A to 09 A) and employed
a primary extinction correction (equation (5)). The
absolute value of F was determined by extrapolating
to zero wavelength, for which P=1. From our current
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Fig. 5. The difference in integrated intensity of cold-worked
and annealed x brass powders (divided by the cold-worked
intensity) taken at various wave-lengths and plotted as a
function of 23f%2¢(1+ cos? 20)/2u sin 20. The points on the
smooth curve are the data of Authicr & Warren (1956).
In both experiments the brass was annealed at 500 °C.
for 2 hours.
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measurements it appears that this extrapolation was
unjustified. If secondary extinction is predominant in
single crystals no procedure for extrapolation can correct
for it.

Authier & Warren (1956) measured the extinetion in
Fe and brass powders as a function of wavelength and
concluded that their data exhibited a monotonic de-
pendence on @)/ u (plotted as 23f2(1 + cos228)p/215in 26
o=density). While /u is the argument in the ex-
pression for secondary extinction in infinitely thick
single crystals (equation (4)) it fails to account for
the finite thickness of the single crystal grains in a
powder specimen as does cquation (9). We have
repeated the Authier & Warren measurements and
have been unable to reproduce their data nor confirm
the monotonic dependence on ¢)/u. Both their meas-
urements and ours are shown in Fig. 5 for x brass.
As mentioned above equation (9) offers a better
description of extinction in these samples.

Summary

The mosaic block model appears to yield extinction
expressions that are applicable to real crystals.
Equations (4) and (8) are applicable to single crystals
whose rocking curve is at least several times that of
an ideally perfect crystal and equation (9) is ap-
plicable to powders. The principal value of equations
(4) and (9) are their use as a guide for selecting those
conditions which minimize extinction. For quantita-
tive work equations (4) and (9) should only be
employed when extinction is small.
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